Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates variation in elastic energy distribution across the aortic zone zero - ScienceDirect

Por um escritor misterioso

Descrição

Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates  variation in elastic energy distribution across the aortic zone zero -  ScienceDirect
PDF) Development of an FEA Framework for Analysis of Subject-Specific Aortic Compliance based on 4D Flow MRI
Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates  variation in elastic energy distribution across the aortic zone zero -  ScienceDirect
Applied Sciences, Free Full-Text
Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates  variation in elastic energy distribution across the aortic zone zero -  ScienceDirect
Biomechanics, Free Full-Text
Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates  variation in elastic energy distribution across the aortic zone zero -  ScienceDirect
Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation
Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates  variation in elastic energy distribution across the aortic zone zero -  ScienceDirect
Computational evaluation of an extra-aortic elastic-wrap applied to simulated aging anisotropic human aorta models
Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates  variation in elastic energy distribution across the aortic zone zero -  ScienceDirect
PDF) Biomechanical characterization of the passive response of the thoracic aorta in chronic hypoxic newborn lambs using an evolutionary strategy
Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates  variation in elastic energy distribution across the aortic zone zero -  ScienceDirect
Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates variation in elastic energy distribution across the aortic zone zero - ScienceDirect
Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates  variation in elastic energy distribution across the aortic zone zero -  ScienceDirect
An integrated set-up for ex vivo characterisation of biaxial murine artery biomechanics under pulsatile conditions
Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates  variation in elastic energy distribution across the aortic zone zero -  ScienceDirect
Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates variation in elastic energy distribution across the aortic zone zero - ScienceDirect
Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates  variation in elastic energy distribution across the aortic zone zero -  ScienceDirect
PDF) In vivo determination of elastic properties of the human aorta based on 4D ultrasound data
Ex vivo biaxial load testing analysis of aortic biomechanics demonstrates  variation in elastic energy distribution across the aortic zone zero -  ScienceDirect
Fluid–structure interaction modeling of compliant aortic valves using the lattice Boltzmann CFD and FEM methods
de por adulto (o preço varia de acordo com o tamanho do grupo)