Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose

Por um escritor misterioso

Descrição

Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Current understanding of substrate specificity and regioselectivity of LPMOs, Bioresources and Bioprocessing
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Recent advances in the efficient degradation of lignocellulosic metabolic networks by lytic polysaccharide monooxygenase
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Controlled depolymerization of cellulose by photoelectrochemical bioreactor using a lytic polysaccharide monooxygenase - ScienceDirect
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
On the expansion of biological functions of lytic polysaccharide monooxygenases - Vandhana - 2022 - New Phytologist - Wiley Online Library
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
IJMS, Free Full-Text
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Assessing the enzymatic effects of cellulases and LPMO in improving mechanical fibrillation of cotton linters, Biotechnology for Biofuels and Bioproducts
de por adulto (o preço varia de acordo com o tamanho do grupo)